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1 Problem Statement 
To leverage the full potential of Statecharts as a highly intuitive and expressive diagrammatic 

notation of behavior, we need a virtual machine capability for dynamically managing Statecharts 
in a running system: a Statechart Virtual Machine. This capability should provide a low-cost 
solution for Statechart management, specifically, one that does not rely on making expensive 
flight software modifications. Furthermore, it should be fully accountable in the following sense: 
first, explaining the behavior of a Statechart throughout its execution, and second, supporting the 
analytic verification of formal properties across all possible executions of a Statechart.  

The principal investigator gathered a team of scientists – Prof. David Harel at the Weizmann 
Institute of Science in Israel --technologists at NASA Ames (Dr. Klaus Havelund), NASA 
Goddard Space Flight Center (Patrick Crouse) and other consultants to build a Statechart Virtual 
Machine as part of a research proposal to NASA UPN 632.  One component of that proposal 
includes a flight experiment on the WIRE testbed platform. Patrick Crouse, a SMEX mission 
director at Goddard is unsure of the WIRE availability beyond FY00. Thus, there is a strong 
incentive to develop the Statechart Virtual Machine experiment for WIRE as early as possible to 
avoid loosing a flight experiment opportunity. 

2  Justification 
The UPN 632 proposal represents a challenge to coordinate scientists and technologies spread 

across the US and the world. The effort is substantial, it requires over $1M of funding for over 
1.5 work years for 3 years. An early prototype would help considerably this effort by identifying 
the difficult issues to work on. 

Although Statecharts have been highly successful for designing the fault protection capability 
of Deep Space One, we don’t have an adequate characterization of the resources required to 
deploy a virtual machine for Statecharts in a resource-limited environment. What’s the minimum 
level of CPU performance needed? Clearly, the 35 Mips RAD 6000 has proven sufficient to 
execute the compiled Statecharts of Deep Space One’s fault protection system. It is also adequate 
for a much larger system like the Remote Agent Experiment at 0.1 Hz. Would 10 Mips suffice 
for a Statechart Virtual Machine of some kind? Performance characterization helps but if the 386 
processor of the WIRE testbed can do it, then we will have a valuable reference point. The 
minimal Statechart Virtual Machine is deliberately reduced in scope so that the performance 
envelope of the 386 processor does not constitute an insurmountable constraint. 

3 Benefits 
The main benefit of building the minimal Statechart Virtual Machine is to take advantage of 

the WIRE testbed availability while it lasts. There are a number of other indirect benefits as well. 
As part of the UPN 632 proposal, we have identified a broad range of potential applications for a 
Statechart Virtual Machine. A fairly large number of people would like to see this concept 
materialize to better evaluate it. Bob Rasmussen also encouraged me to aggressively seek 
sources of funding to do just that.  

A flight demonstration on WIRE will force working out technology transfer and deployment 
issues between JPL and GSFC. This difficulty should then make it easier to coordinate similar 



applications of the STVM to internal projects at JPL, where conventional wisdom often blurs the 
distinction between technology transfer and reuse with people reuse. 

As a low-power, resource-tight computing platform, WIRE is an excellent testbed for project 
managers who contemplate using Statecharts in rovers and other small devices. For those who 
contemplate using Statecharts across the board for all behavioral aspects, the flight experiment 
will give a better metric for evaluating how well the technology scales up.  

Most importantly, the benefit of this minimal Statechart Virtual Machine is to exercise and 
prototype early the technologies and tools involved in the UPN 632 proposal for the full-scale 
Statechart Virtual Machine. This is particularly important to help us organize the project in two 
sensible deliverables relative to the Statechart notation and semantics, for example, finite state 
machines at end of the first year and full Statechart notation and semantics at the end of the 
second year. 

 Finally, this proposal gives us an opportunity to study both the technologies involved in 
building a Statechart Virtual machine capability, including those pertaining to ground systems 
operations. 

4 What is a Statechart Virtual Machine 
The core of a Statechart Virtual Machine (STVM) involves four main components: an XML 

parser, a scheduler and modules for introspection and monitoring (See Figure 1). The UML 
specification includes an XML interchange format for UML model content. This makes working 
with UML models in XML a vendor-neutral, tool-neutral process and saves tool-specific 
interfaces and code generators.  

4.1 Statechart Execution Scheduler 
The scheduler is the core Statechart execution engine. The Statechart semantics defined in the 

UML specification leave a number of open decisions, such as the order of resolution for 
conflicting transitions and the interleaving of concurrent AND states. For this proposal, such 
issues are drastically simplified because there is no concurrency in simple states and simple 
transitions. For full Statechart notation and semantics, this scheduler provides explicit access to 
the scheduling mechanisms and policies that govern Statechart execution. This access is 
particularly important to interface model-based checking tools like those developed in Dr. 
Michael Lowry’s group at NASA Ames.  

4.2 Statechart Introspection and Monitoring 
Introspection refers to the process of querying the Statechart database about the static 

definition of a Statechart characteristics and possible behavior. Monitoring refers to the process 
of querying the scheduler about the dynamic properties of a Statechart execution behavior. 
Introspection is not necessary to demonstrate the Minimal STVM capability. Monitoring is kept 
at a minimum to produce a log of states and transitions visited during execution. 



4.3 Statechart Virtual Machine Architecture 
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Figure 1: Scope & Architecture of Minimal Statechart Virtual Machine 

5 Schedule and Deliverables 
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Figure 2: Minimal Statechart Virtual Machine and related workflow products 

 



The deliverable products involved in this proposal are shown in Figure 2 (bold items); they are 
described in the table below. 

Item Description 

Minimal Statechart 
DTD 

A subset of the UML DTD restricted to describe Statecharts 
made of simple states and simple transitions 

XML Translator A Java application to apply the Minimal Statechart DTD for 
extracting simple Statecharts from models 

Minimal STVM 
(XML Parser) 

A trimmed version of James Clark’s XML parser 
http://www.jclark.com/xml/expat.html 

Minimal STVM  
(Execution Scheduler, 
Monitoring & Action 
Modules, Statechart 

Database) 

Software designed with Rhapsody for C. Full-scale code 
generation from Rhapsody model to C. 

Software developed according to WIRE documentation & 
processes http://tracedata.nascom.nasa.gov/~wire/ up to 
readiness for flight experiement.  

Minimal Statechart 
Definition & Log Style 
Sheets & Presentation 

Graphics 

A Java applet based on the Portable Graphics Markup 
Language (PGML) for rendering Statecharts & log 
annotations in a Java-enabled browser 

This proposal involves three classes of personnel differentiated by their skills base: 

- “ground” software activities pertaining to processing UML models, extracting Minimal 
Statecharts with the XML-based tools and visualizing Minimal Statechart definitions and 
execution logs. The kills involved include: Java and XML-related technologies. 

- “flight” software activities pertaining to designing the Minimal STVM with Rhapsody for 
C, with a special emphasis towards full-scale automatic code generation. 

- “integration & test” software activities pertaining to embedding the Minimal Statechart 
Virtual Machine first in a unit test environment for WIRE and second in a ground-based 
WIRE testbed at Goddard. 

Because funding for WIRE operations follows fiscal year cycles, the deliverables described 
here are to be completed within FY00. The minimal criteria of successful completion consists in 
demonstrating the Minimal STVM in a ground-based unit test environment either at JPL or at 
Goddard. The workflow products identified in Figure 2 will also be streamlined and automated 
according to the automatic code generation technology work of Dr. Nicolas Rouquette originally 
proposed to NASA IV&V to be completed under a CSMISS-funded extension through 3/1/2000 
(See http://eis.jpl.nasa.gov/auto_sw).  



6 Cost, Work Plan & Technical Approach 
The principal investigator and co-investigators are planning to work with two full-time junior 

staff. This proposal involves a lot of emerging software engineering technologies and practices 
that unbiased junior staff can pick up quickly with proper mentoring from senior staff. The 
technical depth of the proposal is intentionally kept at a minimum to allow the junior staff to 
emphasize rigor with respect to applicable software engineering practices and policies. The 
funding requested for this proposal is $60k. 

7 Proposal evaluation 

7.1 Return on investment 
This proposal represents almost all of the first year UPN 632 $50k activity towards defining 

the WIRE experiment. The UPN 632 version includes hierarchical states to the Minimal STVM 
described here; a trivial extension to make.  

Both Deep Impact (DI) and Mars Sample Return (MSR) want to reuse the Deep Space One 
Fault-Protection architecture. However, the DS1 FP engine is, at the core, a mechanism for 
executing compiled Statecharts. It would be a simple task to take the CSMISS Minimal STVM in 
C as a replacement of the DS1 FP compiled Statechart core. This would advance the technology 
transfer to DI and MSR, thereby doubling the CSMISS investment. For DI, the return is further 
increased with the flexibility of the STVM versus compiled Statecharts. This can save a full time 
system engineer easily 25% time on early prototyping and increased test flexibility. At current 
JPL labor rates, that’s roughly $40k of burdened costs.  

The total estimated return on investment after would thus be: $50k + $120k + $40k = $210k. 

7.2 Endorsement 
This proposal is the lite version of a UPN 632 proposal. There has not been sufficient time to 

reach the co-investigators of the UPN 632 proposal to receive their endorsements. These co-
investigators are: 

- Mary Lam from JPL 
- Prof. David Harel, Dean of the Faculty of Mathematics at the Weizmann Institute and 

Chief Technologist at I-Logix 
- Dr. Klaus Havelund from NASA ARC 
- Patrick Crouse, SMEX mission director at NASA GSFC 

7.3 Participation with Industry and Academia 
Prof. David Harel will study safety issues related to modifying Statecharts in a running system 

as part of the UPN 632 work. In this proposal, such criteria are relatively trivial to state. Dr. 
Bruce Douglass from I-Logix has consulted the PI regarding applying the ROPES process. We 
expect the Design Hub to continue the consulting contract with I-Logix throughout the duration 
of this proposal. This is important because we have never applied the ROPES process on any 
completed project yet.  


